INTRODUCTION
The goal of the Radiation Safety Manual is to assist lab management and personnel in complying with regulations put forth by the Texas Department of State Health Services Bureau Radiation Control (DSHS-BRC) and Rice University. This manual is not intended to be a fully comprehensive reference. Further advice concerning hazards associated with specific radioactive substances, devices and the development of new or unfamiliar protocols should be obtained through consultation with the Department of Environmental Health and Safety.

REFERENCES
Texas Department of State Health Services Bureau Radiation Control (DSHS-BRC)
http://www.dshs.state.tx.us/radiation/default.shtm

SCOPE
This program is applicable to all laboratories, research, service and support activities at Rice University that use radioactive materials and energized equipment including x-ray machines, x-ray diffraction units, and electron microscopes.

RESPONSIBILITIES
Radiation Safety Officer (RSO) – The RSO is responsible for administrating this Radiation Safety Program with duties including but not limited to the following:
- Conducts preliminary review for RAM application.
- Oversees the daily management and implementation of the Radiation Safety Program.
- Has the authority to stop any radioactive work deemed a hazard to employees, the public, or the environment.

Environmental Health and Safety – EHS is responsible for audits in compliance of the Radiation Safety Program including but not limited to the following:
- Review of current registration for compliance.
- Identify work area hazards and approve proper personal protective equipment.
- Provide General Radiation Safety training.
- Evaluate and update the programs as needed.

Principle Investigator – PIs are responsible for the safe use of radioactive material and radiation producing devices under their authorization with following requirements.
- Provide laboratory specific training for all students and staff required to use radioactive materials and energized equipment including x-ray machines, x-ray diffraction units, and electron microscopes.
- Notify the RSO of any new radiation sources.
- Notify the RSO if any radiation sources are transferred, received or removed from use.
- Ensures good laboratory practices with emphasis on safety.

Authorized Users – Authorized users are responsible for conducting their experiments in a safe manner by following all applicable radiation safety rules and regulations.
- Everyone who anticipates working with radioactive materials must attend formal radiation safety training provided by EHS.
DOSE AND EXPOSURE

Occupationally Exposed Adults Workers
The NRC dose limit for occupationally exposed adults are listed in Table 1.

<table>
<thead>
<tr>
<th>Dose Limit</th>
<th>Annual Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rem</td>
</tr>
<tr>
<td>Total Effective Dose Equivalent (TEDE)</td>
<td>5</td>
</tr>
<tr>
<td>Lens Dose Equivalent (LDE)</td>
<td>15</td>
</tr>
<tr>
<td>Total Organ Dose Equivalent</td>
<td>50</td>
</tr>
<tr>
<td>Shallow Dose Equivalent (SDE)</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 1: Limits based on values listed in 25 TAC 289.202(f)

Minors
Students under the age of 18 must obtain approval from the RSO to work with RAM. The annual dose limits for minors are 10 percent of the annual dose limits specified for adult workers.

Pregnant Workers
The NRC dose limit to the fetus of a declared pregnant woman is 500 mrem (10% of the occupational dose limits for adults) in one calendar year or 50 mrem in one calendar month. If you are pregnant or believe you may be pregnant contact the RSO. All inquiries will be kept in confidence. We will take the following steps:
1. Provide an opportunity to declare your pregnancy.
2. Evaluate your dose history and exposure potential.
3. Provide you with information concerning risk.
4. Provide suggestions for reducing exposure.
5. Monitor your radiation dose with respect to the NRC limits.

Individual Members of the Public
The total effective dose equivalent to individual members of the public is limited to 100 mrem in a calendar year.

POSTING REQUIREMENTS
Room Requirements

1. Each room that is approved for the use or storage of RAM must be posted with, "CAUTION RADIOACTIVE MATERIAL".
2. Room signs are provided by EHS. Laboratories where RAM is used or stored shall post a "Notice to Employees" (RC FORM 203-1) signage visible for all employees and visitors. This form is available for download at the EHS website.

Work Stations Requirements:

1. When possible, RAM use should be restricted to specific, labeled RAM work stations within the lab that are labeled with "CAUTION RADIOACTIVE MATERIAL" tape.
2. Surfaces and pieces of equipment located within a labeled work area should be considered contaminated until an appropriate survey of the area determines otherwise.
3. Individuals working at a labeled work station must wear personal protective equipment (lab coat, gloves, safety glasses).

Container Requirements:

Individual containers of RAM must be labeled with "CAUTION RADIOACTIVE MATERIAL" tape unless properly decontaminated and surveyed. The label should indicate:

1. Type of radionuclide
2. Estimate quantity of radioactivity and date
3. Any other hazard information to the use of this material

Equipment Requirements:

The following equipment must be labeled with "CAUTION RADIOACTIVE MATERIAL" tape.

1. Fume hoods, refrigerators, cabinets etc. used to store RAM
2. Centrifuges, pipettes, water baths, etc., that are used for RAM work must be labeled unless they have been decontaminated.

Protocols involving radioactive materials should be performed with equipment should dedicated for RAM work only. This equipment should not be used to perform any other experiments unless it is decontaminated and surveyed prior to use.

Lab Waste Requirements:

All radioactive waste containers must be labeled with "CAUTION RADIOACTIVE MATERIAL" tape and a label indicating the isotope contained. EHS will provide labeled waste containers. Make sure that radioactive warning labels are clearly affixed to any container used for radioactive specimens, waste, sharps containers, etc.

ORDER AND RECEIVING RAM

Obtaining approval

All radioactive material received in the lab must be approved by EHS before the order is placed.

1. Approval may be obtained through the RAM Order Approval form in Appendix B.
2. A RAM inventory number will be issued if the order is approved.

Each stock vial, sealed source, standard, marker, etc. must have its own unique inventory number. For example, if you are ordering 2 x 0.250 mCi of P-32, you should make two entries and receive two approval numbers.

The RSO will ensure that the total on-hand radioactive material inventory remains within the activity limits authorized under the Radioactive Material License.
Placing the order
After approval has been granted by the RSO, the authorized user may purchase the RAM within the scope of that specific authorization. The authorized user must notify the RSO of the intended order and receipt of radioactive material by completing an order form on email.

To maintain inventory control the requisition should contain this pertinent information on the request:
1. Name of Principle Investigator and contact information
2. Type of radioisotope
3. Chemical form and compound
4. Activity per vial, total number of vials, and total activity of the order
5. Vendor name
6. Any additional information

The following Ship To address should be used for radioactive material orders:

Environmental Health and Safety
Rice University
6500 Main Street
Houston, TX 77030
Attn: (Primary Investigator)
713-348-8801

Each supplier of radioactive material is required by state and federal regulations to validate Rice University license to possess and to use such material. The RSO will arrange for copies of the license to be made available to the supplier if need.

Receiving
Radioactive material shipments are reviewed and processed by the RSO. Packages are inspected for contamination and recorded on the Radioactive Material Package Receipt and Disposal Form. After determination that the external surfaces of secondary containers are not contaminated, applicable radioactive material markings will be defaced or obscured. Notification is relayed to the listed contact person that the material has arrived and that it should be picked up at the earliest opportunity. Special arrangements for pick can be made by calling the RSO in advance.

Authorized users will sign, date, and take possession of the inventory form upon receipt of the package. This form will be maintained by the laboratory personnel. In special circumstances, radioactive material shipments may be received directly at laboratories. If this is the case, arrangements must be made with the RSO for the appropriate receipt processing.

Opening RAM Packages
Put on lab coats, safety glasses, and gloves before opening the outer package. Examine the package to ensure that it is not damaged or leaking. Survey the external surface of the shipping container (box) for removable contamination and document the results in your receipt log.

Open the inner package to verify the contents and check the integrity of the final source container (inspect for evidence of breakage, loss of liquid, discoloration of packaging, etc.). Report any problems to EHS.
Monitor the package and the packing material for contamination. If there is no contamination, obliterate all radiation labels and discard the packaging in regular trash.

INVENTORY AND SECURITY

Each laboratory must maintain a strong inventory and accountability system. Your inventory should enable you to continually track incoming shipments of material and account for its use, transfer, and disposal. In addition, it should ensure that material is secured and accessible only to approved persons. Standard forms for documenting inventory are in Appendix E.

A. Receipt Log

Receipt records must include the following:

1. radionuclide
2. date of receipt
3. initial activity
4. amount of each withdrawal from the stock vial
5. date of final stock vial disposal
6. package monitoring results
7. EHS approval number

B. Quarterly Inventory

Each calendar quarter, an inventory of RAM on hand in the lab is required. The activity on hand for each radionuclide should not exceed the licensee's possession limit for that radionuclide. Standard forms can be downloaded from our website. Sealed sources should be inventoried and included on the summary.

To complete your quarterly inventory:

1. Dispose of any material no longer useful to your research and record the disposal date on the receipt log.
2. Perform a physical check of all remaining stock vials/sources in the lab. There should be a one to one correlation between the sources on the receipt log without a disposal date, and the sources in the lab.
3. Sum the activity on hand for each isotope.

Laboratory Security

Access to radioactive material must be controlled so that unauthorized persons do not have access to the licensed material. Stored radioactive material must be secured (locked). Stock vials and sealed sources must be stored in locked containers. The containers must be kept locked at all times. Locked boxes must be secured to the refrigerator/freezer/cabinet.

LABORATORY MONITORING

Labs should be checked for contamination after each use of RAM. Include areas of potential radioactive contamination such as bench tops, the floor, telephones, doorknobs, faucet handles, freezer/refrigerator handles, etc. during routine monitoring.

Monitor all facilities and equipment (liquid scintillation counters, centrifuges, pipettes, refrigerators, fume hoods, RAM sinks, etc.) used with RAM prior to being returned to non-controlled use and before performing any maintenance or repair work.
Survey meters may be used in areas where only gamma emitters (e.g., I-125) or energetic beta emitters (e.g., P-32) are used. Wipe tests must be used to check for contamination in labs using RAM that cannot be easily detected with a survey meter (e.g., H-3, C-14).

Use of survey meters:
Prior to use, assure that the instrument is functioning by performing a battery test, checking the background reading, and still within the calibration date. Verify that the meter and probe are appropriately sensitive for the isotope being monitored. Use a low-energy gamma scintillation probe for I-125; a pancake probe for energetic beta emitters like P-32.

To perform a survey, move the meter/probe slowly over the surface you are monitoring. Keep the face of the probe parallel to the surface, and as close as possible without contaminating the meter.

Performing a wipe test
Put on gloves, safety glasses, and lab coat. Drag the "wipe" over the surface to be tested applying moderate pressure and covering approximately 100 cm². The wipe can be a q-tip or filter paper wetted in ethanol.

Count the wipes in a liquid scintillation counter. Include one "blank" sample to verify that the background reading on the counter is consistent.

Perform a constancy test before using the counter. Most counters come with a "standard source" that can be used for this test. The constancy reading should be consistent (typically within 10% of the average value for the source).

Records must include:
1. a map of the lab including the areas surveyed with sample ID numbers.
2. date of the survey
3. initials/name of the person performing the survey
4. survey instrument used
5. background reading in cpm
6. survey results for each area in cpm.

Forms for recording survey results can be downloaded from the EHS website and are in the appendices of this manual.

Positive Monitoring Results
Contamination exceeding three times background must be corrected. Following decontamination, perform a resurvey. Record resurvey results in lab records. For widespread contamination or personnel contamination, contact EHS immediately.

PERSONAL MONITORING
External Dosimetry
Personnel dosimeters are devices worn to measure external radiation doses. State regulations require the use of monitoring devices for:
1. Adults likely to receive in one year from sources external to the body a dose in excess of 10% of the regulatory dose limit
2. Minors likely to receive, in one year from sources of radiation external to the body, a deep dose equivalent on excess of 0.1 rem, a lens dose equivalent in excess of 0.15 rem, or a shallow dose equivalent to the skin or to the extremities in excess of 0.5 rem
3. Declared pregnant women
4. Individuals working in a high radiation area.

If needed, dosimeters will be issued quarterly. They are changed on the first of January, April, July, and October. EHS delivers new dosimeters to workers in need of dosimetry a few days in advance of the change date, and collects used dosimeters about a week later. To properly assess each person’s occupational exposure, it is very important that dosimeters are changed in a timely manner. Dosimeters can be requested online by completing the Badge Request Form on the EHS website.

Whole body dosimeters should be worn between the waist and shoulders, with the name plate facing away from the body, when working with RAM or when handling subjects being x-rayed. Rings should be worn under gloves and with the surface if the detection material facing the palm. When not in use, dosimeters must be stored in a low background area such as an office and not taken out of the building.

All personnel monitoring results are maintained by EHS and are available at your request.

Internal Dosimetry
When using radioactive material, accidental intakes may occur. This can happen as a result of a spill or loose surface contamination, or as a result of using volatile radioactive materials. Routine thyroid bioassays are required for iodinators, and urine bioassay for users of larger quantities of H-3. Although unlikely, a bioassay may also be requested by EHS in response to a spill or personnel contamination.

WASTE DISPOSAL
Radioactive waste is very expensive to dispose of. It is the responsibility of the Principle Investigator to arrange payment for the disposal of radioactive waste. However, some things can be done to help alleviate the costs.

1. Reduce the amounts used.
2. Use short-lived radionuclides whenever practical. These can be decayed on site and disposed of as regular trash when no longer radioactive.
3. Do not combine different waste types.

Radioactive wastes, depending on the physical form or make-up, are processed differently. The most difficult and expensive waste to dispose of is called “mixed waste” containing radioactive waste commingled with hazardous chemicals or biohazard waste. Whenever possible, limit the creation of these problematic mixed wastes. Contact EHS if you think you will be creating a mixed waste so that options can be discussed.

Segregation by Physical Form
Note: Radioactive waste must be segregated by both physical form and radiological half-life as described below.

Liquids
Liquid waste must not contain any solid objects such as tips or filter papers. Do not mix aqueous and organic-based solutions. This produces a “mixed-waste” which can be difficult to dispose of properly. Waste containers must be capped when not immediately “in-use” and stored within secondary containers at all times.
Liquid scintillation vials are a common enough waste that they are collected without needing to be poured into a liquid waste container. Collection boxes lined with double plastic liners can be obtained from EHS. Do not empty the individual vials. Only vials with scintillation cocktail may be placed in these containers. **NO** plastic bags, vial flats, test tubes, Ependorf tubes, or any other waste may be placed in these containers.

Solids (Dry Wastes)

“**Dry**” or “**solid**” wastes include paper, plastic, unbroken glass (no Pasteur pipettes), and gels. Items such as absorbent pads, disposable gloves, source vials, and plastic pipette tips can be disposed of in a “dry waste” container. No pourable liquids are allowed in dry waste containers. Tubes, bottles, and vials must be emptied of their contents before being placed in the dry waste container. Lead (in containment vessels or shields) is a hazardous material and as such must not be placed into a dry waste container. Serological pipettes are considered dry waste.

Radioactive sharps are any objects that might puncture human skin such as Pasteur pipettes, needles, broken glass, razor blades, etc. These materials must be placed in puncture-resistant, leak-proof containers. Never use a biological sharps container to collect radioactive sharps to avoid confusion.

Mixed Wastes

Mixed wastes are wastes that meet the legal definitions of both hazardous (based on chemical properties) and radioactive material and can be very difficult if not impossible to dispose. Avoid the generation of mixed wastes that contain long-lived radionuclides (half-lives >90 days).

Radioactive, infectious waste must be rendered noninfectious before EHS can pick up the waste. Special autoclave bags are available for handling this type of waste. Common disinfectants such as bleach may be sufficient for this purpose. Call EHS for instructions on how to handle infectious, radioactive waste.

Segregation by Radioactive Half Life

Along with the physical segregations discussed above, each radionuclide should be collected separately. This is required because short lived nuclides such as 32P can be “held for decay in storage”. This means that the waste can be kept in a storage area, resurveyed after a set period of time, and if no radioactivity can be detected it can be disposed of as regular trash. Since only some radionuclides can be “decayed” for disposal purposes, and those that can decay at differing rates, it is important that laboratories properly segregate their wastes.

Training and Communication

New Employee Training - Before beginning work in the lab, individuals who use radioactive material or frequent areas where radioactive material is used or stored must attend EHS training and receive training from their principle investigator.

Annual Training held by EHS

Each calendar year, all persons who work in or frequent labs where RAM is used or stored must attend Annual Radiation Safety Training.
Annual training held by Principle Investigator (PI)

In addition to EHS training, each PI or the individual with primary supervisory responsibility must hold an in-lab training session to review their experimental protocols, work habits, and available safety equipment for adherence to the ALARA policy. Documentation of an ALARA training session is required annually. The topics covered, the date, and the names of attendees must be recorded and available in the lab's records. Standard forms for documenting ALARA training can be downloaded from our website and are included in the appendices of this manual.

The topics for this training must include, but are not limited to, the following:

1. Location of all permit paperwork, including access in the absence of the permit holder.
2. Permit review including approved nuclides, limits, laboratories, users, and any other restrictions.
4. Where radioactive material is used within the lab(s) and restrictions on that use.
5. Storage location(s) and procedures for radioactive material security and storage.
6. Radioactive material waste segregation and disposal forms and inventory forms properly signed and dated.
7. Review of written protocols involving radioactive material.
8. Radiological safety considerations and potential for the generation of airborne radioactive material.
9. Special handling techniques which will minimize exposure when handling radionuclides.
10. Instruct trainee on the proper use of survey equipment and techniques.
11. Frequency for both routine and post operational surveys as applicable to your laboratory.
12. Availability of appropriate personal protective equipment and a discussion of its importance.
13. Emergency procedures including contact numbers, spill response instructions, and locations of eyewash stations, safety showers, and spill kits.

Training for irradiator users:

Each individual must receive training by the irradiator licensee and by EHS before using an irradiator. This training is separate from other radioactive material training.

All records must be maintained according to the Texas Department of State Health Services Bureau Radiation Control (DSHS-BRC), and standard operating procedures with a training acknowledgement log sheet should be readily accessible for inspection.

Definitions

Note: The Texas Regulations for the Control of Radiation (TRCR) Section 11.2, has a comprehensive set of definitions relevant to the license and to properties of radiation.

Becquerel (Bq): A S.I. unit of activity is the becquerel (Bq), which is defined as 1 atomic transformation (disintegration) per second.

Curie (Ci): A unit of measurement of radioactivity. One curie is that quantity of radioactive material which decays at the rate of 3.7 X10^10 disintegration per second (dps). Commonly used sub-multiples of the curie are the millicurie (mCi) = 3.7 X10^7 dps (2.22 X 10^9 disintegration per minute (dpm) and the microcurie(µCi) = 3.7 X10^4 dps (2.22 X 10^6 dpm).
Dose: as used in the TRCR rules means absorbed dose or dose equivalent as appropriate:

Absorbed dose: The energy imparted by ionizing radiation per unit mass of irradiated material at the place of interest. The special unit of absorbed dose is the rad. (See “rad”).

Dose equivalent: The quantity that expresses on a common scale for all radiation a measure of the postulated effect on a given organ. It is defined as the absorbed dose in rads times certain modifying factors. The unit of dose equivalent is the rem. (See “rem”).

Exposure: The absolute value of the total charge of the ions of one sign produced in air when all the electron (negatrons and positrons) liberated by photons in a unit mass value of air are completely stopped in air. The special unit of exposure is the roentgen. (See “roentgen”).

Grey (Gy): S.I. unit of absorbed dose which is equal to 100 rad.

High radiation area: Any area, accessible to individuals, in which there exists radiation at such levels that a major portion of the body could receive in any one hour a dose in excess of 100 millirems.

Ionizing radiation: Any electromagnetic or particulate radiation capable of producing ions, directly or indirectly, in its passage through matter. Ionizing radiation includes gamma and x-rays, alpha and beta particles, high speed electrons, neutrons, and other nuclear particles.

Occupational dose: The exposure of an individual to ionizing radiation:
1. in a restricted area, or
2. in the course of employment in which the individual’s duties involve exposure to ionizing radiation provided that occupational dose shall not be deemed to include any exposure of an individual to ionizing radiation for the purpose of diagnosis or therapy of the individual.

Rad: The special unit of absorbed dose. One rad = 0.01 joule/kg (100 ergs/g) or material. (See “Absorbed does”).

Radiation: One or more of the following:
1. gamma and x-rays; alpha and beta particles and other atomic or nuclear particles or rays;
2. stimulated emission of radiation from any electronic device to such energy density levels as to reasonably cause bodily harm; or
3. sonic, ultrasonic, or infrasonic waves from any electronic device or resulting from the operation of an electronic circuit in an electronic device in the energy range to reasonably cause detectable bodily harm.

Radiation area: Any area, accessible to individuals, in which there exists ionizing radiation at such levels that a major portion of the body could receive in any one hour a dose in excess of 5 millirems, or in any five consecutive days (40 hours) a dose in excess of 100 millirems.

Radiation safety officer (RSO): One who has a knowledge of and the responsibility to apply appropriate
radiation protection rules, standards, and practices; official licensed by the state of Texas to supervise all aspects of the license.

Rem: The special unit of dose equivalent. One millirem (mrem) = 0.001 rem. For the purpose of the TRCR rules, any of the following is considered to be equal to 1 rem:
1. an exposure of 1 R (roentgen) of x or gamma radiation;
2. an absorbed dose of 1 ad due to x, gamma, or beta radiation;
3. an absorbed dose of 0.05 ad due to particles heavier than protons and with sufficient energy to reach the lens of the eye; or
4. an absorbed dose of 0.1 rad due to neutrons of high energy protons. (See “Dose equivalent”).

Restricted area (controlled area): Any area access to which is controlled by the licensee or registrant for purposes of protection of individuals from exposure to radiation and radioactive material.

Roentgen: The special unit of exposure. One roentgen ® equals 2.58 X10^-4 coulombs/kg or air. (See “Exposure”).

Sealed source: Radioactive material that is permanently bonded or fixed in a capsule or matrix designed to prevent release and dispersal of the radioactive material under the most severe conditions which are likely to be encountered in normal use and handling.

Sievert (SV): An S.I. unit of dose equivalent which is equal to 100 rem.
EMERGENCY PROCEDURES

Campus Police (713) 348-6000
Radiation Safety Officer (713) 348-2692
Chris Mize (832) 370-6990
Environmental Health and Safety Department (713) 348-4444
(Kathryn Cavender, Director)

For emergency assistance and reporting (512) 458-7460
Texas Department of Health
24 hour Radiological Emergency Assistance

FIRE or EXPLOSION in RADIATION AREA

If small, and if you know how, attempt to extinguish the fire with the proper fire extinguisher.
1. If not, remove all personnel from the immediate danger area, shut doors (do not lock)
2. Call Campus Police or pull fire alarm and the Radiation Safety Officer
3. If necessary, evacuate the building
4. If possible, shut off all non-essential oxygen, gas and electrical appliances in the area
5. Re-enter the building only after the all clear is signaled by the alarm system or a safety official

Radioactive Material Spills

Minor (no radiation hazard to personnel):
1. Confine the spill immediately. Label the spill area.
2. Wear gloves. Absorb liquids with absorbent paper. Do not spread area. Damp wipe with proper solvent (usually water unless reactive with it).
3. Notify the Radiation Safety Officer.
4. Decontaminate
5. Monitor

Major:
1. If spill is not volatile, wear gloves, right the container; evacuate personnel from the room, restrict access.
2. If spill is on clothing discard; decontaminate the individual.
3. Notify the radiation safety officer, stand by to assist.
4. Decontaminate the area per instructions from the Radiation Safety Officer; if volatile use appropriate full face protective breathing mask; the Environmental Health and Safety Department has a air supplied breathing mask to loan.
5. Monitor all persons and area to assess decontamination success.
6. Prepare a complete report of the accident.

Medical Emergency

Minor: Fill out Rice’s First Report of Injury Form, go to Hermann Hospital ER, (713) 704-4060.
Major: Call campus police for EMS; go to Hermann Hospital Emergency Room, 6411 Fannin, (713) 704-4060, tell medical personnel patient is on FAST TRACK; notify Dr. Lamki, Chief Radiologist/Nuclear Medicine (713) 704-1788 or Dr. Bing Sang, Radiation Safety Officer, (713) 704-2747, that a Rice employee is going to ER; when possible fill out First Report of Injury Form.
Appendix A: Address and Telephone Numbers

A. Rice University Personnel

1. Rice University
 Biosciences Research Collaborative
 6500 Main Street
 Houston, Texas 77030

2. Radiation Safety Officer
 Christopher Mize
 (713) 348-2692 - Office
 (832) 370-6990 - Mobile

3. Rice University Environmental Health and Safety Department:
 Kathryn Cavender, Director, (713) 348-4444

4. Rice University Police Department, (713) 348-6000, On campus: Ext. 6000

B. Waste Disposal Companies

 NSSI/Sources & Services, Inc.,
 P.O. Box 34042,
 Houston, Texas 77234
 Phone: (713) 641-0391

 Monitoring and Survey Instrument Services

1. Microtec Services, Inc., 110 Charles Street, Pasadena, TX 77506, (713) 475-2274.

2. Monitoring Services, P.O. Box 580648, Houston, TX 77258-0648, (713) 641-0391.

3. Beckman Coulter; Corporate Headquarters: P.O. Box 3100, Fullerton, CA 92634,
 Phone: (800) 742-2345.

2. Suntrac, 1818 E. Main, League City, TX 77573; (281) 338-2133.

5. Temetrics, Inc., 9675 W. 76th Street, Eden Prairie, MN 55344, Phone: (952) 278-4437.
Appendix B: Radioactive Material Request of Purchase

For permission to order and use of radioactive material, fill out the following portions of this form with a copy of the pre-experiment plan and send it to the Radiation Safety Officer for approval.

Note: All radioactive packages must first be shipped directly to the Radiation Safety Office so that Radiation Safety can check for contamination.

Use the following shipping address for all radioactive packages:

Environmental Safety
6500 Main Street
Houston, TX 77030
Attn: (Primary Investigator)
713-348-8801

Requestor _______________________ Email ____________________
Authorized User Name (PI) __
Radionuclide ________________
Compound name __
Amount (mCi) ________________
Additional Comments

Contact Person __________________________________ Date ________________
Department ________________________________
Telephone Number __________________________
Appendix C: Pre-Experiment Plan for Use of Radioactive Material

Name of applicant: _______________________ Date: ___________________

Tentative duration of experiment: ____________________________________

List of radionuclide(s) to be used: (Students are limited to 100 µCi C-14 or 500 µCi H-3 per experiment)

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Amount mCi</th>
<th>Specific activity</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Have you had safety training of these radionuclides? _____________

If no, arrangement must be made with your supervisor to receive training before use.

Brief Description of Experiment:

Include location and amount of radionuclide to be used in the specified area at any one time, location of storage of stock, general experimental methods, special precautions if radionuclides are volatile or reactive. Note method of containment of radioactive material to protect personnel and comply with license, form and methods of disposal of radioactive products and waste, for brevity, the researcher can make reference to the radiation license sections.

Signature of Supervising Licensed User:

Experiment Approved: ___________________ Date _________________________

Experiment Denied ______________________ Date _________________________

Explanation:
Appendix D: Monthly Unsealed Source Wipe Test Report

Building: ________________________________ Room Number: ____________________________

Principal Investigator: ___________________________ __________________

Radioisotopes used in this Laboratory: ____________________________

Counting Equipment …………….. Serial Number: ________________

Type: LSC or Other (specify):______________ Model Number: ________________

Laboratory Diagram

Wipe Test Samples

<table>
<thead>
<tr>
<th>Number</th>
<th>Location</th>
<th>Result (CPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Attach all original data printouts from applicable survey and counting equipment.

Comments:

Surveyed By: ________________________________

Date: ____________________________

RICE UNIVERSITY
Appendix E: Semi-Annual Unsealed Source Inventory Report

Reporting Period: ________________________________

Authorized User: ________________________________

Note: All accidents and loss of radiation material must be reported to the RSO immediately. File this form and provide copy to the RSO on January and July of each year.

Holdings: Please estimate the amount of radioactivity you currently possess. This includes material held for decay or later disposal as well as receipts.

Receipts: Please report the radioactive material shipments you have received this period.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Initial Volume</th>
<th>Initial Activity (mCi)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Chemical/physical form</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RADIOISOTOPE RUNNING LOG

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Activity Used (mCi)</th>
<th>Amount Used</th>
<th>Amount (mCi) / Volume Remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix F: Rice University Radioactive Contamination Survey Record

Principal Investigator: _____________________ Building/Room #: ____________________

Radionuclides used: ____________________

Survey Instrument

<table>
<thead>
<tr>
<th>Make, Model, Serial No.</th>
<th>Background (cpm)</th>
<th>Response Check or Calibration Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contamination Survey Results

1. Enter work area, name of person surveyed, or location designation (number) per attached map.
2. Check “yes” if contamination found to be greater than two times background. If “yes”, be sure to document that results after decontamination are less than two times background. Check “see attached” if results are contained on an attached printout. Call EHS at X4444 if assistance is needed.

<table>
<thead>
<tr>
<th>Survey Instrument Date</th>
<th>Used</th>
<th>Location, Work Area, Object or Name of Person Surveyed</th>
<th>Contaminated?</th>
<th>Surveyed By</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes / No / See Att.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/ / /</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/ / /</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/ /</td>
<td></td>
</tr>
</tbody>
</table>
Waste Disposal Report Form

Isotope: __________ **Principal Investigator:** ___________________ **Inventory #:** ______________

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Date</th>
<th>Disposal Form (in mCi)</th>
<th>Amount Disposed (mCi)</th>
<th>Remaining Inventory (mCi)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Solid</td>
<td>Liquid</td>
<td>Vials</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chemical Composition for bulk liquid waste and/or vial waste listed above

<table>
<thead>
<tr>
<th>Chemical Constituents</th>
<th>Concentration (with units)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

__________________________ ___________________________ __________________________
Principal Investigator (or designated) signature Printed Name Date

Waste Pickup by EHS:

Date: ___________________________ By: ___________________________